Consequências de um Ártico em rápido aquecimento
Consequências de um Ártico em rápido aquecimento
O aquecimento do Ártico revela mudanças nas estações, distúrbios generalizados, clima extremo e eventos incomuns de mortalidade da vida selvagem
A mudança das estações e os distúrbios climáticos, como incêndios florestais, clima extremo e eventos incomuns de mortalidade da vida selvagem, estão se tornando cada vez mais difíceis de avaliar dentro do contexto do que antes era considerado normal.
Manchetes
-
A temperatura média do ar na superfície do Ártico no ano passado (outubro de 2021 a setembro de 2022) foi a 6ª mais quente desde 1900. Os últimos sete anos são coletivamente os sete anos mais quentes já registrados.
-
A baixa pressão no Ártico do Alasca e no norte do Canadá sustentou temperaturas quentes de verão no Mar de Beaufort e no Arquipélago Canadense.
-
O Ártico continua a aquecer duas vezes mais rápido que o resto do globo, com aquecimento ainda maior em alguns locais e épocas do ano.
Nos oceanos
-
A extensão do gelo marinho do Ártico em 2022 foi semelhante a 2021 e bem abaixo da média de longo prazo.
-
As temperaturas médias da superfície do mar em agosto de 2022 continuaram mostrando tendências de aquecimento para 1982-2022 na maioria das regiões sem gelo do Oceano Ártico. As SSTs no Mar de Chukchi foram anormalmente frias em agosto de 2022.
-
A maioria das regiões do Ártico continuou a apresentar aumento da proliferação de plâncton oceânico, ou produtividade primária oceânica , durante o período de 2003-22, com os maiores aumentos no Ártico da Eurásia e no Mar de Barents.
-
Registros de satélite de 2009 a 2018 mostram o aumento do tráfego de navios marítimos no Ártico à medida que o gelo marinho diminui. Os aumentos mais significativos no tráfego marítimo estão ocorrendo do Oceano Pacífico através do Estreito de Bering e do Mar de Beaufort.
-
A missão Oceans Melting Greenland da NASA usou tecnologia de ponta para demonstrar que o aumento das temperaturas oceânicas ao longo da plataforma continental da Groenlândia está contribuindo para a perda de gelo por meio do derretimento das geleiras nas margens da camada de gelo.
Na terra
-
A cobertura de neve terrestre de junho de 2022 foi excepcionalmente baixa tanto na América do Norte (segunda mais baixa no registro de 56 anos) quanto no Ártico da Eurásia (terceira mais baixa no registro). O acúmulo de inverno foi acima da média, mas o derretimento precoce da neve em um Ártico em aquecimento contribuiu para a baixa cobertura geral de neve.
-
Um aumento significativo na precipitação do Ártico desde a década de 1950 agora é detectável em todas as estações. Condições mais úmidas do que o normal foram observadas de outubro de 2021 a setembro de 2022, naquele que foi o terceiro ano mais chuvoso dos últimos 72 anos.
-
A camada de gelo da Groenlândia experimentou seu 25º ano consecutivo de perda de gelo. Em setembro de 2022, o aquecimento sem precedentes no final da temporada criou condições de derretimento da superfície em mais de 36% da camada de gelo, inclusive no cume da camada de gelo de 10.500 pés.
-
O esverdeamento da tundra diminuiu em relação aos valores recordes dos dois anos anteriores, com alta produtividade na maior parte do Ártico norte-americano, mas produtividade extraordinariamente baixa no nordeste da Sibéria. Incêndios florestais, eventos climáticos extremos e outros distúrbios se tornaram mais frequentes, influenciando a variabilidade do verde da tundra.
-
Diferenças marcantes foram observadas entre as durações do gelo do lago na Eurásia e na América do Norte, com durações de gelo substancialmente mais longas do que a média na Eurásia e predominantemente mais curtas na América do Norte. O congelamento dos lagos do Ártico está ocorrendo mais tarde na maior parte da América do Norte, especialmente no Canadá.
-
A distribuição, estado de conservação e ecologia da maioria dos polinizadores do Ártico são pouco conhecidos, embora esses insetos sejam extremamente importantes para os ecossistemas do Ártico e os sistemas alimentares dos povos indígenas do Ártico e residentes do Ártico. O monitoramento coordenado de longo prazo, o aumento do financiamento e as tecnologias emergentes podem melhorar nossa compreensão dos habitats e do status dos polinizadores do Ártico e informar estratégias eficazes de conservação.
Pássaros árticos
-
Em 2022, apesar de um surto de gripe aviária altamente patogênica afetando aves em toda a América do Norte e condições climáticas variáveis na primavera, o tamanho da população da maioria dos gansos do Ártico permaneceu alto com tendências crescentes ou estáveis. Várias espécies de gansos fornecem comida e significado cultural para muitos povos.
-
Em contraste, as comunidades na região norte de Bering e no sul do Mar de Chukchi relataram mortandade de aves marinhas acima do esperado pelo sexto ano consecutivo. Rastrear a duração, a extensão geográfica e a magnitude da mortandade de aves marinhas na extensa e remota costa do Alasca só é possível por meio de uma comunicação bem coordenada e uma rede dedicada de parceiros tribais, estaduais e federais.
Consequências da rápida mudança ambiental do Ártico para as pessoas
-
As pessoas experimentam as consequências de um Ártico em rápida mudança como os efeitos combinados das condições físicas, respostas dos recursos biológicos, impactos na infraestrutura, decisões que influenciam as capacidades adaptativas e influências ambientais e internacionais na economia e no bem-estar.
-
Vivendo e inovando em ambientes árticos ao longo de milênios, os povos indígenas desenvolveram conhecimento holístico, proporcionando resiliência e sustentabilidade . A experiência indígena é aumentada por habilidades científicas para reconstruir ambientes passados e modelar e prever mudanças futuras. Os tomadores de decisão (de comunidades a governos) têm as habilidades necessárias para aplicar essa experiência e conhecimento para ajudar a mitigar e se adaptar a um Ártico em rápida mudança.
-
Abordar as mudanças ambientais do Ártico sem precedentes requer ouvir uns aos outros, alinhar valores e colaborar entre sistemas de conhecimento, disciplinas e setores da sociedade.
Uma amostra de eventos notáveis e distúrbios generalizados em todo o Ártico. Imagem de Climate.gov.
Fonte: NOAA – Arctic Report Card
Referências:
Surface Air Temperature
Ballinger, T. J., and Coauthors, 2021: Surface air temperature. Arctic Report Card 2021, T. A. Moon, M. L. Druckenmiller, and R. L. Thoman, Eds., https://doi.org/10.25923/53xd-9k68.
Chylek, P., C. Folland, J. D. Klett, M. Wang, N. Hengartner, G. Lesins, and M. K. Dubey, 2022: Annual mean Arctic amplification 1970-2020: Observed and simulated by CMIP6 climate models. Geophys. Res. Lett., 49, e2022GL099371, https://doi.org/10.1029/2022GL099371.
England, M. R., I. Eisenman, N. J. Lutsko, and T. J. W. Wagner, 2021: The recent emergence of Arctic amplification. Geophys. Res. Lett., 48, e2021GL094086, https://doi.org/10.1029/2021GL094086.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Q. J. Roy. Meteor. Soc., 146, 1999-2049, https://doi.org/10.1002/qj.3803.
Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345.
Lenssen, N., G. Schmidt, J. Hansen, M. Menne, A. Persin, R. Ruedy, and D. Zyss, 2019: Improvements in the GISTEMP uncertainty model. J. Geophys. Res.-Atmos., 124, 6307-6326, https://doi.org/10.1029/2018JD029522.
Mamen, J., H. T. T. Tajet, and K. Tunheim, 2022: Klimatologisk månedsoversikt, June 2022, MET info no. 6/2022 (In Norwegian), ISSN 1894-759X.
NOAA National Weather Service (NWS), 2022: NOWData – NOAA Online Weather Data [Cold Bay Area & King Salmon Area], accessed 12 September 2022, https://www.weather.gov/wrh/Climate?wfo=afg.
Osborn, T. J., P. D. Jones, D. H. Lister, C. P. Morice, I. R. Simpson, J. P. Winn, E. Hogan, and I. C. Harris, 2021: Land surface air temperature variations across the globe updated to 2019: the CRUTEM5 dataset. J. Geophys. Res.-Atmos., 126, e2019JD032352, https://doi.org/10.1029/2019JD032352.
Previdi, M., K. L. Smith, and L. M. Polvani, 2021: Arctic amplification of climate change: a review of underlying mechanisms. Environ. Res. Lett., 16, 093003, https://doi.org/10.1088/1748-9326/ac1c29.
Rantanen, M., A. Y. Karpechko, A. Lipponen, K. Nordling, O. Hyvärinen, K. Ruosteenoja, T. Vihma, and A. Laaksonen, 2022: The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Env., 3, 168, https://doi.org/10.1038/s43247-022-00498-3.
Walsh, J. E., T. J. Ballinger, E. S. Euskirchen, E. Hanna, J. Mård, J. E. Overland, H. Tangen, and T. Vihma, 2020: Extreme weather and climate events in northern areas: A review. Earth-Sci. Rev., 209, 103324, https://doi.org/10.1016/j.earscirev.2020.103324.
Yu, Y., W. Xiao, Z. Zhang, X. Cheng, F. Hui, and J. Zhao, 2021: Evaluation of 2-m air temperature and surface temperature from ERA5 and ERA-I using buoy observations in the arctic during 2010-2020. Remote Sens., 13, 2813, https://doi.org/10.3390/rs13142813.
Terrestrial Snow Cover
Brown, R. D., and C. Derksen, 2013: Is Eurasian October snow cover extent increasing? Environ. Res. Lett., 8, 024006, https://doi.org/10.1088/1748-9326/8/2/024006.
Brown, R., and Coauthors, 2017: Arctic terrestrial snow cover. In: Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017. pp. 25-64. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway.
Brun, E., V. Vionnet, A. Boone, B. Decharme, Y. Peings, R. Valette, F. Karbou, and S. Morin, 2013: Simulation of Northern Eurasian local snow depth, mass, and density using a detailed snowpack model and meteorological reanalyses. J. Hydrometeor., 14, 203-219, https://doi.org/10.1175/JHM-D-12-012.1.
Estilow, T. W., A. H. Young, and D. A. Robinson, 2015: A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring. Earth Syst. Sci. Data, 7, 137-142, https://doi.org/10.5194/essd-7-137-2015.
Gelaro, R., and Coauthors, 2017: The Modern-era retrospective analysis for research and applications, Version 2 (MERRA-2). J. Climate, 30, 5419-5454, https://doi.org/10.1175/JCLI-D-16-0758.1.
GMAO (Global Modeling and Assimilation Office), 2015: MERRA-2tavg1_2d_lnd_Nx:2d, 1-Hourly, Time-Averaged, Single-Level, Assimilation, Land Surface Diagnostics V5.12.4, Goddard Earth Sciences Data and Information Services Center (GESDISC), accessed: 16 August 2022, https://doi.org/10.5067/RKPHT8KC1Y1T.
Luojus, K., and Coauthors, 2022: ESA Snow Climate Change Initiative (Snow_cci): Snow Water Equivalent (SWE) level 3C daily global climate research data package (CRDP) (1979 – 2020), version 2.0. NERC EDS Centre for Environmental Data Analysis, accessed: 16 August 2022, https://doi.org/10.5285/4647cc9ad3c044439d6c643208d3c494.
Meredith, M., and Coauthors, 2019: Polar Regions. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, H. -O. Pörtner, and co-editors, in press, https://www.ipcc.ch/srocc/.
Mortimer, C., L. Mudryk, C. Derksen, K. Luojus, R. Brown, R. Kelly, and M. Tedesco, 2020: Evaluation of long-term Northern Hemisphere snow water equivalent products. Cryosphere, 14, 1579-1594, https://doi.org/10.5194/tc-14-1579-2020.
Mudryk, L. R., P. J. Kushner, C. Derksen, and C. Thackeray, 2017: Snow cover response to temperature in observational and climate model ensembles. Geophys. Res. Lett., 44, 919-926, https://doi.org/10.1002/2016GL071789.
Mudryk, L., M. Santolaria-Otín, G. Krinner, M. Ménégoz, C. Derksen, C. Brutel-Vuilmet, M. Brady, and R. Essery, 2020: Historical Northern Hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble. Cryosphere, 14, 2495-2514, https://doi.org/10.5194/tc-14-2495-2020.
Muñoz Sabater, J., 2019: ERA5-Land hourly data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 8 September 2022, https://doi.org/10.24381/cds.e2161bac.
Robinson, D. A., T. W. Estilow, and NOAA CDR Program, 2012: NOAA Climate Data Record (CDR) of Northern Hemisphere (NH) Snow Cover Extent (SCE), Version 1 [r01]. NOAA National Centers for Environmental Information, accessed: 16 August 2022, https://doi.org/10.7289/V5N014G9.
U.S. National Ice Center, 2008: IMS Daily Northern Hemisphere Snow and Ice Analysis at 1 km, 4 km, and 24 km Resolutions, Version 1. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center, accessed: 22 Aug 2022, https://doi.org/10.7265/N52R3PMC.
Precipitation
Becker, A., P. Finger, A. Meyer-Christoffer, B. Rudolf , K. Schamm, U. Schneider, and M. Ziese, 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901-present. Earth Syst. Sci. Data, 5(1), 71-99, https://doi.org/10.5194/essd-5-71-2013.
Hersbach, H. B., and Coauthors, 2020: The ERA5 global reanalysis. Q. J. Roy. Meteor. Soc., 146, 1999-2049, https://doi.org/10.1002/qj.3803.
Hurtado, S. I., 2020: RobustLinearReg: Robust Linear Regressions. R package version 1.2.0, https://CRAN.R-project.org/package=RobustLinearReg.
IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 2-6, https://doi.org/10.1017/9781009157896, in press.
Kusunoki, S., R. Mizuta R., and M. Hosaka, 2015: Future changes in precipitation intensity over the Arctic projected by a global atmospheric model with a 60-km grid size. Polar Sci., 9, 277-292, https://doi.org/10.1016/j.polar.2015.08.001.
Loeb, N. A., A. Crawford, J. C. Stroeve, and J. Hanesiak, 2022: Extreme precipitation in the eastern Canadian Arctic and Greenland: An evaluation of atmospheric reanalyses. Front. Env. Sci., 10, 866929, https://doi.org/10.3389/fenvs.2022.866929.
McCrystall, M., J. Stroeve, M. C. Serreze, B. C. Forbes, and J. Screen, 2021: New climate models reveal faster and larger increases in Arctic precipitation than previously projected. Nat. Commun., 12(1), 6765, https://doi.org/10.1038/s41467-021-27031-y.
Schneider, U., P. Finger, E. Rustemeier, M. Ziese, and S. Hänsel, 2022: Global precipitation analysis products of the GPCC, https://opendata.dwd.de/climate_environment/GPCC/PDF/GPCC_intro_products_v2022.pdf.
Sillmann J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res.-Atmos., 118, 2473-2493, https://doi.org/10.1002/jgrd.50188.
Walsh, J. E., T. J. Ballinger, E. S. Euskirchen, E. Hanna, J. Mård, J. E. Overland, H. Tangen, and T. Vihma, 2020: Extreme weather and climate events in northern areas: A review. Earth-Sci. Rev., 209, 103324, https://doi.org/10.1016/j.earscirev.2020.103324.
White, J., J. E. Walsh, and R. L. Thoman, Jr., 2021: Using Bayesian statistics to detect trends in Alaskan precipitation. Int. J. Climatol., 41(3), 2045-2059, https://doi.org/10.1002/joc.6946.
Ye, H., D. Yang, A. Behrangi, S. L. Stuefer, X. Pan, E. Mekis, Y. Dibike, and J. E. Walsh, 2021: Precipitation Characteristics and Changes. Chapter 2 in Arctic Hydrology, Permafrost and Ecosystems (D. Yang and D.L. Kane, Eds.), Springer Nature Switzerland, 914 pp., https://doi.org/10.1007/978-3-030-50930-9_2.
Yu, L., and S. Zhong, 2021: Trends in Arctic seasonal and extreme precipitation in recent decades. Theor. Appl. Climatol., 145, 1541-1559, https://doi.org/10.1007/s00704-021-03717-7.
Greenland Ice Sheet
Box, J. E., D. van As, and K. Steffen, 2017: Greenland, Canadian and Icelandic land ice albedo grids (2000-2016). GEUS Bull., 38, 53-56, https://doi.org/10.34194/geusb.v38.4414.
Hopwood, M. J., and Coauthors, 2020: Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic? Cryosphere, 14, 1347-1383, https://doi.org/10.5194/tc-14-1347-2020.
Kokhanovsky, A., J. E. Box, B. Vandecrux, K. D. Mankoff, M. Lamare, A. Smirnov, and M. Kern, 2020: The determination of snow albedo from satellite measurements using fast atmospheric correction technique. Remote Sens., 12, 234, https://doi.org/10.3390/rs12020234.
MacFerrin, M., and Coauthors, 2019: Rapid expansion of Greenland’s low-permeability ice slabs. Nature, 573, 403-407, https://doi.org/10.1038/s41586-019-1550-3.
Mankoff, K. D., A. Solgaard, W. Colgan, A. P. Ahlstrøm, S. A. Khan, and R. S. Fausto, 2020: Greenland ice sheet solid ice discharge from 1986 through March 2020. Earth Syst. Sci. Data, 12, 1367-1383, https://doi.org/10.5194/essd-12-1367-2020.
Mankoff, K. D., and Coauthors, 2021: Greenland ice sheet mass balance from 1840 through next week. Earth Syst. Sci. Data, 13, 5001-5025, https://doi.org/10.5194/essd-13-5001-2021.
Morlighem, M., and Coauthors, 2017: BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys. Res. Lett., 44(21), 11051-11061, https://doi.org/10.1002/2017GL074954.
Mote, T. L., 2007: Greenland surface melt trends 1973-2007: Evidence of a large increase in 2007. Geophys. Res. Lett., 34, L22507, https://doi.org/10.1029/2007GL031976.
Mouginot, J., and Coauthors, 2019: Forty-six years of Greenland ice sheet mass balance from 1972 to 2018. P. Natl. Acad. Sci., 116(19), 9239-9244, https://doi.org/10.1073/pnas.1904242116.
Ryan, J. C., L. C. Smith, D. van As, S. W. Cooley, M. G. Cooper, L. H. Pitcher, and A. Hubbard, 2019: Greenland ice sheet surface melt amplified by snowline migration and bare ice exposure. Sci. Adv., 5, eaav3738, https://doi.org/10.1126/sciadv.aav3738.
van As, D., R. S. Fausto, J. Cappelen, R. S. van de Wa, R. J. Braithwaite, H. Machguth, and PROMICE project team, 2016: Placing Greenland ice sheet ablation measurements in a multi-decadal context. GEUS Bull., 35, 71-74, https://doi.org/10.34194/geusb.v35.4942.
Wehrlé, A., J. E. Box, A. M. Anesio, and R. S. Fausto, 2021: Greenland bare ice albedo from PROMICE automatic weather station measurements and Sentinel-3 satellite observations. GEUS Bull., 47, 5284, https://doi.org/10.34194/geusb.v47.5284.
Sea Ice
Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. J. Zwally, 1996 (updated yearly): Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, accessed 27 August 2022, https://doi.org/10.5067/8GQ8LZQVL0VL.
Comiso, J. C., W. N. Meier, and R. Gersten, 2017: Variability and trends in the Arctic sea ice cover: Results from different techniques. J. Geophys. Res., 122, 6883-6900, https://doi.org/10.1002/2017JC012768.
Fetterer, F., K. Knowles, W. N. Meier, M. Savoie, and A. K. Windnagel, 2017 (updated daily): Sea Ice Index, Version 3. NSIDC: National Snow and Ice Data Center, Boulder, CO, USA, accessed 2 October 2022, https://doi.org/10.7265/N5K072F8.
Ivanova, N., O. M. Johannessen, L. T. Pedersen, and R. T. Tonboe, 2014: Retrieval of Arctic sea ice parameters by satellite passive microwave sensors: A comparison of eleven sea ice concentration algorithms. IEEE Trans. Geosci. Rem. Sens., 52(11), 7233-7246, https://doi.org/10.1109/TGRS.2014.2310136.
Kern, S., T. Lavergne, D. Notz, L. T. Pedersen, R. T. Tonboe, R. Saldo, and A. M.Sørensen, 2019: Satellite passive microwave sea-ice concentration data set intercomparison: closed ice and ship-based observations. Cryosphere, 13, 3261-3307, https://doi.org/10.5194/tc-13-3261-2019.
Lavergne, T., and Coauthors, 2019: Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere, 13, 49-78, https://doi.org/10.5194/tc-13-49-2019.
Meier, W. N., J. S. Stewart, H. Wilcox, M. A. Hardman, and D. J. Scott, 2021: Near-Real-Time DMSP SSMIS Daily Polar Gridded Sea Ice Concentrations, Version 2 [Data Set]. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, accessed 2 October 2022, https://doi.org/10.5067/YTTHO2FJQ97K.
Petty, A. A., N. T. Kurtz, R. Kwok, T. Markus, and T. A. Neumann, 2020: Winter Arctic sea ice thickness from ICESat-2 freeboards. J. Geophys. Res.-Oceans, 125, e2019JC015764, https://doi.org/10.1029/2019JC015764.
Petty, A. A., N. Kurtz, R. Kwok, T. Markus, and T. A. Neumann, 2021: ICESat-2 L4 Monthly Gridded Sea Ice Thickness, Version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, accessed 9 September 2022, https://doi.org/10.5067/CV6JEXEE31HF.
Petty, A. A., N. Keeney, A. Cabaj, P. Kushner, and M. Bagnardi, 2022: Winter Arctic sea ice thickness from ICESat-2: upgrades to freeboard and snow loading estimates and an assessment of the first three winters of data collection. Cryosphere Discuss, https://doi.org/10.5194/tc-2022-39, in review.
Ricker, R., S. Hendricks, L. Kaleschke, X. Tian-Kunze, J. King, and C. Haas, 2017: A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. Cryosphere, 11, 1607-1623, https://doi.org/10.5194/tc-11-1607-2017.
Sumata, H., L. de Steur, S. Gerland, D. V. Divine, and O. Pavlova, 2022: Unprecedented decline of Arctic sea ice outflow in 2018. Nat. Comm., 13, 1747, https://doi.org/10.1038/s41467-022-29470-7.
Tschudi, M., W. N. Meier, J. S. Stewart, C. Fowler, and J. Maslanik, 2019a: EASE-Grid Sea Ice Age, Version 4. [March, 1984-2020]. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, accessed 1 September 2022, https://doi.org/10.5067/UTAV7490FEPB.
Tschudi, M., W. N. Meier, and J. S. Stewart, 2019b: Quicklook Arctic Weekly EASE-Grid Sea Ice Age, Version 1. [March, 2021]. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, accessed 3 October 2022, https://doi.org/10.5067/2XXGZY3DUGNQ.
Tschudi, M. A., W. N. Meier, and J.S. Stewart, 2020: An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC). Cryosphere, 14, 1519-1536, https://doi.org/10.5194/tc-14-1519-2020.
Sea Surface Temperature
Huang, B., C. Liu, V. Banzon, E. Freeman, G. Graham, B. Hankins, T. Smith, and H. Zhang, 2021: Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Climate, 34(8), 2923-2939, https://doi.org/10.1175/JCLI-D-20-0166.1.
Meier, W. N., F. Fetterer, A. K. Windnagel, and J. S. Stewart, 2021a: NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4. [1982-2021]. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center, accessed 10 September 2022, https://doi.org/10.7265/efmz-2t65.
Meier, W. N., F. Fetterer, A. K. Windnagel, and J. S. Stewart, 2021b: Near-Real-Time NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 2. [1982-2021], accessed 10 September 2022, https://doi.org/10.7265/tgam-yv28.
Peng, G., W. N. Meier, D. J. Scott, and M. H. Savoie, 2013: A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. Earth Syst. Sci. Data, 5, 311-318, https://doi.org/10.5194/essd-5-311-2013.
Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609-1625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.
Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473-5496, https://doi.org/10.1175/2007JCLI1824.1, and see http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html.
Stroh, J. N., G. Panteleev, S. Kirillov, M. Makhotin, and N. Shakhova, 2015: Sea-surface temperature and salinity product comparison against external in situ data in the Arctic Ocean. J. Geophys. Res.-Oceans, 120, 7223-7236, https://doi.org/10.1002/2015JC011005.
Timmermans, M. -L., and Z. M. Labe, 2021: Sea surface temperature. Arctic Report Card 2021, T. A. Moon, M. L. Druckenmiller, and R. L. Thoman, Eds., https://doi.org/10.25923/2y8r-0e49.
Arctic Ocean Primary Productivity: The Response of Marine Algae to Climate Warming and Sea Ice Decline
Ardyna, M., M. Babin, E. Devered, A. Forest, M. Gosselin, P. Raimbault, and J. -É. Tremblay, 2017: Shelf-basin gradients shape ecological phytoplankton niches and community composition in the coastal Arctic Ocean (Beaufort Sea). Limnol. Oceanogr., 62, 2113-2132, https://doi.org/10.1002/lno.10554.
Ardyna M., and Coauthors, 2020: Under-ice phytoplankton blooms: Shedding light on the “invisible” part of Arctic primary production. Front. Mar. Sci., 7, 608032, https://doi.org/10.3389/fmars.2020.608032.
Behrenfeld, M. J., and P. G. Falkowski, 1997: Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr., 42(1), 1-20, https://doi.org/10.4319/lo.1997.42.1.0001.
Bouman, H. A., T. Jackson, S. Sathyendranath, and T. Platt, 2020: Vertical structure in chlorophyll profiles: influence on primary production in the Arctic Ocean. Philos. Trans. Roy. Soc. A, 378, 20190351, https://doi.org/10.1098/rsta.2019.0351.
Comiso, J. C., 2015: Variability and trends of the global sea ice covers and sea level: Effects on physicochemical parameters. Climate and Fresh Water Toxins, L. M. Botana, M. C. Lauzao, and N. Vilarino, Eds., De Gruyter, Berlin, Germany, https://doi.org/10.1515/9783110333596-003.
Comiso, J. C., W. N. Meier, and R. Gersten, 2017: Variability and trends in the Arctic Sea ice cover: Results from different techniques. J. Geophys. Res.-Oceans, 122, 6883-6900, https://doi.org/10.1002/2017JC012768.
Cooper L. W., and J. M. Grebmeier, 2022: A chlorophyll biomass time-series for the Distributed Biological Observatory in the context of seasonal sea ice declines in the Pacific Arctic region. Geosciences, 12(8), 307, https://doi.org/10.3390/geosciences12080307.
Crawford, A. D., K. M. Krumhardt, N. S. Lovenduski, G. L. Van Dijken, and K. R. Arrigo, 2020: Summer high-wind events and phytoplankton productivity in the Arctic Ocean. J. Geophys. Res.-Oceans, 125, e2020JC016565, https://doi.org/10.1029/2020jc016565.
Frey, K. E., J. C. Comiso, L. W. Cooper, J. M. Grebmeier, and L. V. Stock, 2021: Arctic ocean primary productivity: The response of marine algae to climate warming and sea ice decline. Arctic Report Card 2021, T. A. Moon, M. L. Druckenmiller, and R. L. Thoman, Eds., https://doi.org/10.25923/kxhb-dw16.
Gaffey, C. B., K. E. Frey, L. W. Cooper, and J. M. Grebmeier, 2022: Phytoplankton bloom stages estimated from chlorophyll pigment proportions suggest delayed summer production in low sea ice years in the northern Bering Sea. PLoS ONE, 17, e0267586, https://doi.org/10.1371/journal.pone.0267586.
Holding, J. M., and Coauthors, 2015: Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean. Nat. Climate Change, 5, 1079-1082, https://doi.org/10.1038/nclimate2768.
Hopwood, M. J., and Coauthors, 2020: Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic? Cryosphere, 14, 1347-1383, https://doi.org/10.5194/tc-14-1347-2020.
Lewis, K. M., and K. R. Arrigo, 2020: Ocean color algorithms for estimating chlorophyll a, CDOM absorption, and particle backscattering in the Arctic Ocean. J. Geophys. Res.-Oceans, 125, e2019JC015706, https://doi.org/10.1029/2019JC015706.
Mundy, C. J., and Coauthors, 2009: Contribution of under-ice primary production to an ice edge upwelling phytoplankton bloom in the Canadian Beaufort Sea. Geophys. Res. Lett., 36, L17601, https://doi.org/10.1029/2009GL038837.
Popova, E. E., A. Yool, A. C. Coward, Y. K. Aksenov, S. G. Alderson, A. de Cuevas, and T. R. Anderson, 2010: Control of primary production in the Arctic by nutrients and light: insights from a high-resolution ocean general circulation model. Biogeosciences, 7, 3569-3591, https://doi.org/10.5194/bg-7-3569-2010.
Terhaar, J., R. Lauerwald, P. Regnier, N. Gruber, and L. Bopp, 2021: Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion. Nat. Comm., 12, 169, https://doi.org/10.1038/s41467-020-20470-z.
von Appen, W. J., and Coauthors, 2021: Sea-ice derived meltwater stratification slows the biological carbon pump: results from continuous observations. Nat. Comm., 12, 7309, https://doi.org/10.1038/s41467-021-26943-z.
Tundra Greenness
Berner, L. T., and S. J. Goetz, 2022: Satellite observations document trends consistent with a boreal forest biome shift. Glob. Change Biol., 28(10), 3275-3292, https://doi.org/10.1111/gcb.16121.
Bhatt, U. S., and Coauthors, 2021: Climate drivers of Arctic tundra variability and change using an indicators framework. Environ. Res. Lett., 16, 055019, https://doi.org/10.1088/1748-9326/abe676.
CAVM Team, 2003: Circumpolar Arctic vegetation map (1:7,500,000 scale). Conservation of Arctic Flora and Fauna (CAFF) Map No. 1 U.S. Fish and Wildlife Service, Anchorage, AK.
Christensen, T. R., and Coauthors, 2021: Multiple ecosystem effects of extreme weather events in the Arctic. Ecosystems, 24, 122-136, https://doi.org/10.1007/s10021-020-00507-6.
Dial, R. J., C. T. Maher, R. E. Hewitt, and P. F. Sullivan, 2022: Sufficient conditions for rapid range expansion of a boreal conifer. Nature, 608, 546-551, https://doi.org/10.1038/s41586-022-05093-2.
Heijmans, M. M. P. D., and Coauthors, 2022: Tundra vegetation change and impacts on permafrost. Nat. Rev. Earth Environ., 3, 68-84, https://doi.org/10.1038/s43017-021-00233-0.
Jorgenson, M. T., and Coauthors, 2022: Rapid transformation of tundra ecosystems from ice-wedge degradation. Global Planet. Change, 216, 103921, https://doi.org/10.1016/j.gloplacha.2022.103921.
Macander, M. J., P. R. Nelson, T. W. Nawrocki, G. V. Frost, K. M. Orndahl, E. C. Palm, A. F. Wells, and S. J. Goetz, 2022: Time-series maps reveal widespread change in plant functional type cover across Arctic and boreal Alaska and Yukon. Environ. Res. Lett., 17, 054042, https://doi.org/10.1088/1748-9326/ac6965.
Magnússon, R. Í., A. Hamm, S. V. Karsanaev, J. Limpens, D. Kleijn, A. Frampton, T. C. Maximov, and M. M. P. D. Heijmans, 2022: Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra. Nat. Commun., 13, 1556, https://doi.org/10.1038/s41467-022-29248-x.
Pinzon, J. E., and C. J. Tucker, 2014: A non-stationary 1981-2012 AVHRR NDVI3g time series. Remote Sens., 6, 6929-6960, https://doi.org/10.3390/rs6086929.
Rogers, A., S. P. Serbin, and D. A. Way, 2022: Reducing model uncertainty of climate change impacts on high latitude carbon assimilation. Glob. Change Biol., 28, 1222-1247, https://doi.org/10.1111/gcb.15958.
Seider, J. H., T. C. Lantz, T. Hermosilla, M. A. Wulder, and J. A. Wang, 2022: Biophysical determinants of shifting tundra vegetation productivity in the Beaufort Delta region of Canada. Ecosystems, https://doi.org/10.1007/s10021-021-00725-6.
Yang, D., and Coauthors, 2022: Remote sensing from unoccupied aerial systems: Opportunities to enhance Arctic plant ecology in a changing climate. J. Ecol., https://doi.org/10.1111/1365-2745.13976.
Satellite Record of Pan-Arctic Maritime Ship Traffic
Arctic Council, 2009: Arctic Marine Shipping Assessment 2009 Report, 187 pp, https://pame.is/index.php/projects/arctic-marine-shipping/amsa.
Arctic Council, 2013: Vision for the Arctic, 6 pp, https://oaarchive.arctic-council.org/handle/11374/287.
Arctic Council, 2022: Arctic Ship Traffic Data. Accessed 27 September 2022, https://pame.is/index.php/projects/arctic-marine-shipping/astd#astd-geographical-scope.
Berkman, P. A., and O. R. Young, 2009: Governance and environmental change in the Arctic Ocean. Science, 324, 339-340, https://doi.org/10.1126/science.1173200.
Berkman, P. A., L. Kullerud, A. Pope, A. N. Vylegzhanin, and O. R. Young, 2017: The Arctic Science Agreement propels science diplomacy. Science, 358, 596-598, https://doi.org/10.1126/science.aaq0890.
Berkman, P. A., G. Fiske, J.-A. Royset, L. W. Brigham, and D. Lorenzini, 2020a: Next-generation Arctic marine shipping assessments. Governing Arctic Seas: Regional Lessons from the Bering Strait and Barents Sea, Vol. 1, O. R. Young, P. A. Berkman, and A. N. Vylegzhanin, Eds., Springer Nature, 241-268.
Berkman, P. A., G. Fiske, and D. Lorenzini, 2020b: Baseline of Next-Generation Arctic Marine Shipping Assessments – Oldest Continuous Pan-Arctic Satellite Automatic Identification System (AIS) Data Record of Maritime Ship Traffic, 2009-2016, https://doi.org/10.18739/A2TD9N89Z.
Berkman, P. A., J. M. Grebmeier, G. Fiske, and L. L. Jørgenson, 2022a: Satellite observations of maritime ship traffic to enhance implementation of binding agreements in the Arctic Ocean, Arctic Observing Summit 2022, Trømso, Norway, 1-5, https://arcticobservingsummit.org/wp-content/uploads/2022/02/2022_013_Berkman_WG5.pdf.
Berkman, P. A., G. Fiske, J. M. Grebmeier, and A. N. Vylegzhanin, 2022b: Maritime ship traffic in the Central Arctic Ocean High Seas as a case study with informed decisionmaking. Building Common Interests in the Arctic Ocean with Global Inclusion, Vol. 2, P. A. Berkman, A. N. Vylegzhanin, O. R. Young, D. A. Balton, and O. R. Øvretveit, Eds., Springer Nature, 321-346.
IMO, 2021. Further shipping GHG emission reduction measures adopted. International Maritime Organization, London. 17 June 2021, https://www.imo.org/en/MediaCentre/PressBriefings/pages/MEPC76.aspx.
Kapsar, K., B. Sullender, J. Liu, and A. Poe, 2022: North Pacific and Arctic marine traffic dataset (2015-2022). Data in Brief, 44, 108531, https://doi.org/10.1016/j.dib.2022.108531.
NASA, 2018: Shipping Responds to Arctic Ice Decline. Accessed 25 September 2022, https://earthobservatory.nasa.gov/images/91981/shipping-responds-to-arctic-ice-decline.
Sheffield, G., A. Ahmasuk, F. Ivanoff, A. Noongwook, and J. Koonooka, 2021: 2020 Foreign Marine Debris Event—Bering Strait. NOAA Technical Report OAR ARC; 21-12, 8 pp, https://doi.org/10.25923/jwag-eg41.
Smith, L. C., and S. R. Stephenson, 2013: New Trans-Arctic shipping routes navigable by midcentury. P. Natl. Acad. Sci., 10, 6-10, https://doi.org/10.1073/pnas.1214212110.
Stafford, K. M., 2021: The Changing Arctic Marine Soundscape. NOAA Technical Report OAR ARC; 21-14, https://doi.org/10.25923/jagc-4a84.
Theocharis, D., S. Pettit, V. S. Rodrigues, and J. Haider, 2018: Arctic shipping: A systematic literature review of comparative studies. J. Transp. Geogr., 69, 112-128, https://doi.org/10.1016/j.jtrangeo.2018.04.010.
United Nations, 1982: Convention on the Law of the Sea. (Signed: Montego Bay, 10 December 1982; Entry into Force: 16 November 1994), https://www.refworld.org/docid/3dd8fd1b4.html.
Lake Ice
Arp, C. M., and Coauthors, 2019: Ice roads through lake-rich Arctic watersheds: Integrating climate uncertainty and freshwater habitat responses into adaptive management. Arct. Antarct. Alp. Res., 51(1), 9-23, https://doi.org/10.1080/15230430.2018.1560839.
Brown, L. C., and C. R. Duguay, 2010: The response and role of ice cover in lake-climate interactions. Prog. Phys. Geog., 34, 671-704, https://doi.org/10.1177/0309133310375653.
Copernicus Climate Change Service, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service Climate Data Store (CDS), 5 September 2022, https://cds.climate.copernicus.eu/cdsapp#!/home.
Dauginis, A. L., and L. C. Brown, 2021: Recent changes in pan-Arctic sea ice, lake ice, and snow-on/off timing. Cryosphere, 15, 4781-4805, https://doi.org/10.5194/tc-15-4781-2021.
Du, J., J. S. Kimball, C. R. Duguay, Y. Kim, and J. Watts, 2017: Satellite microwave assessment of Northern Hemisphere lake ice phenology from 2002 to 2015. Cryosphere, 11, 47-63, https://doi.org/10.5194/tc-11-47-2017.
Duguay, C. R., and L. Brown, 2018: Lake Ice. Arctic Report Card 2018, E. Osborne, J. Richter-Menge, and M. Jeffries, Eds., https://www.arctic.noaa.gov/Report-Card.
Duguay, C. R., T. D. Prowse, B. R. Bonsal, R. D. Brown, M. P. Lacroix, and P. Ménard, 2006: Recent trends in Canadian lake ice cover. Hydrol. Process., 20, 781-801, https://doi.org/10.1002/hyp.6131.
Helfrich, S. R., D. McNamara, B. H. Ramsay, T. Baldwin, and T. Kasheta, 2007: Enhancements to, and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS). Hydrol. Process., 21, 1576-1586, https://doi.org/10.1002/hyp.6720.
Natural Earth , 2022: Free vector and raster map data @ naturalearthdata.com. Accessed: 18 Aug 2022, https://www.naturalearthdata.com/
U.S. National Ice Center, 2008: IMS daily Northern Hemisphere snow and ice analysis at 1 km, 4 km, and 24 km resolutions, version 3. Boulder, Colorado, USA. NSIDC: National Snow and Ice Data Center, accessed: 18 Aug 2022, https://doi.org/10.7265/N52R3PMC.
Arctic Geese of North America
Alaska Division of Environmental Health, 2022: Highly pathogenic avian influenza (HPAI) outbreaks and biosecurity toolkit from USDA APHIS. Accessed 26 September 2022, https://dec.alaska.gov/eh/vet/announcements/avian-influenza-outbreaks/#resources.
Alisauskas, R. T., and Coauthors, 2022: Subpopulation contributions to a breeding metapopulation of migratory arctic herbivores: survival, fecundity and asymmetric dispersal. Ecography, 2022(7), e05653, https://doi.org/10.1111/ecog.05653.
Fox, A. D., and J. O. Leafloor (eds.), 2018: A global audit of the status and trends of Arctic and Northern Hemisphere goose populations. Conservation of Arctic Flora and Fauna International Secretariat: Akureyri, Iceland. ISBN 978-9935-431-66-0.
Hupp, J. W., D. H. Ward, D. X. Soto, and K. A. Hobson, 2018: Spring temperature, migration chronology, and nutrient allocation to eggs in three species of arctic-nesting geese: Implications for resilience to climate warming. Glob. Change Biol., 24, 5056-5071, https://doi.org/10.1111/gcb.14418.
Lefebvre, J., G., Gauthier, J. F., Giroux, A. Reed, E. T. Reed, and L. Bélanger, 2017: The greater snow goose Anser caerulescens atlanticus: Managing an overabundant population. Ambio, 46, 262-274, https://doi.org/10.1007/s13280-016-0887-1.
Olson, S. J., 2021: Pacific Flyway Data Book, 2021: U.S. Department of the Interior, Fish and Wildlife Service, Division of Migratory Bird Management, Vancouver, Washington.
Overton, C. T., and Coauthors, 2022: Megafires and thick smoke portend big problems for migratory birds. Ecology, 103(1), e03552, https://doi.org/10.1002/ecy.3552.
Parrett, J. P., T. Obritschkewitsch, and R. W. McNown, 2021: Avian studies for the Alpine Satellite Development Project, 2021, ABR, Inc. Available at: https://catalog.northslopescience.org/gl/dataset/2321.
Ruthrauff, D. R., V. P. Patil, J. W. Hupp, and D. H. Ward, 2021: Life-history attributes of Arctic-breeding birds drive uneven responses to environmental variability across different phases of the reproductive cycle. Ecol. Evol., 11, 18514-18530, https://doi.org/10.1002/ece3.8448.
Tape, K. D., P. L. Flint, B. W. Meixell, and B. V. Gaglioti, 2013: Inundation, sedimentation, and subsidence creates goose habitat along the Arctic coast of Alaska. Environ. Res. Lett., 8, 045031, https://doi.org/10.1088/1748-9326/8/4/045031.
U.S. Fish and Wildlife Service, 2020: Migratory bird subsistence harvest in Alaska; updates to the regulations: Federal Register, 85 FR 73233, FWS-R7-MB-2-2-0022.
U.S. Fish and Wildlife Service, 2022: Waterfowl population status, 2022. U.S. Department of the Interior, Washington, D.C. USA. https://www.fws.gov/library/collections/waterfowl-population-status-reports.
U.S. Geological Survey, 2022: Distribution of highly pathogenic avian influenza H5 and H5N1 in North America, 2021/2022. https://www.usgs.gov/media/images/distribution-highly-pathogenic-avian-influenza-h5-and-h5n1-north-america-20212022. Accessed 26 September 2022.
VonBank, J. A., M. D. Weegman, P. T. Link, S. A. Cunningham, K. J. Kraai, D. P. Collins, and B. M. Ballard, 2021: Winter fidelity, movements, and energy expenditure of midcontinent greater white-fronted geese. Mov. Ecol., 9, 2, https://doi.org/10.1186/s40462-020-00236-4.
Weegman, M. D., R. T. Alisauskas, D. K. Kellett, Q. Zhao, S. Wilson, and T. Telenský, 2022: Local population collapse of Ross’s and lesser snow geese driven by failing recruitment and diminished philopatry. Oikos, 2022(5), e09184, https://doi.org/10.1111/oik.09184.
Consequences of Rapid Environmental Arctic Change for People
Apassingok, M. D., V. K. Metcalf, and B. P. Kelly, 2022: Moving to the back of the boat: how a new approach to Arctic research can help us better understand and respond to environmental change. ArcticToday. September 9, 2022. https://www.arctictoday.com/moving-to-the-back-of-the-boat/.
Fisher, A. M., B. P. Kelly, and G. W. Kling (eds.), 2020: Arctic Futures 2050 Conference Report. Washington, D.C., Study of Environmental Arctic Change. https://doi.org/10.6084/m9.figshare.12148770. 48 pp.
Fleischer, N. L., P. Melstrom, E. Yard, M. Brubaker, and T. Thomas, 2014: The epidemiology of falling-through-the-ice in Alaska, 1990-2010. J. Public Health (Oxford), 36(2), 235-242, https://doi.org/10.1093/pubmed/fdt081.
Harper, S. L., C. Wright, S. Masina, and S. Coggins, 2020: Climate change, water, and human health in the Arctic. Water Secur., 10, 100062, https://doi.org/10.1016/j.wasec.2020.100062.
Huntington, H. P., M. Nelson, and L. T. Quakenbush, 2016: Traditional knowledge regarding ringed seals, bearded seals, and walrus near Shishmaref, Alaska. Final report to the Eskimo Walrus Commission, the Ice Seal Committee, and the Bureau of Ocean Energy Management for contract #M13PC00015. 9 pp.
ICC-Alaska, 2015: Alaskan Inuit Food Security Conceptual Framework: How to Assess the Arctic from an Inuit Perspective: Summary and Recommendations Report, Inuit Circumpolar Council-Alaska, https://iccalaska.org/wp-icc/wp-content/uploads/2016/03/Food-Security-Summary-and-Recommendations-Report.pdf.
Johnson, N., and Coauthors, 2021: The Impact of COVID-19 on Food Access for Alaska Natives in 2020. Arctic Report Card 2021, T. A. Moon, M. L. Druckenmiller, and R. L. Thoman, Eds., https://doi.org/10.25923/5cb7-6h06.
Kelly, B. P., and A. M. Fisher, 2021: Complex collaboration tools for a sustainable Arctic. Wither the Arctic Ocean? Research, Knowledge Needs, and Development en Route to the New Arctic, P. Wassman, Ed., Fundación BBVA, 43-51.
Landrum, L., and M. M. Holland, 2020: Extremes become routine in an emerging new Arctic. Nat. Climate Change, 10, 1108-1115, https://doi.org/10.1038/s41558-020-0892-z.
Metcalf, V. K., 2021: Nangaghneghput – our way of life. Front. Ecol. Environ., 19(8), 427, https://doi.org/10.1002/fee.2409.
Schaeffer, J. Q., 2021: Climate change and its impacts on Indigenous People. Science, Technology and the Path Forward for a New Arctic, J. Kim & O. Young, Eds., Korea Maritime Institute & East-West Center, 118-125.
York, A., U. S. Bhatt, E. Gargulinski, Z. Grabinski, P. Jain, A. Soja, R. L. Thoman, and R. Ziel, 2020: Wildfire in High Northern Latitudes. Arctic Report Card 2020, R. L. Thoman, J. Richter-Menge, and M. L. Druckenmiller, Eds., https://doi.org/10.25923/2gef-3964.
[ Se você gostou desse artigo, deixe um comentário. Além disso, compartilhe esse post em suas redes sociais, assim você ajuda a socializar a informação socioambiental ]
in EcoDebate, ISSN 2446-9394
A manutenção da revista eletrônica EcoDebate é possível graças ao apoio técnico e hospedagem da Porto Fácil.
[CC BY-NC-SA 3.0][ O conteúdo da EcoDebate pode ser copiado, reproduzido e/ou distribuído, desde que seja dado crédito ao autor, à EcoDebate com link e, se for o caso, à fonte primária da informação ]