Global warming of 2°C would lead to about 230 billion tonnes of carbon being released from the world’s soil
Global warming of 2°C would lead to about 230 billion tonnes of carbon being released from the world’s soil
Warming of 2°C would release billions of tonnes of soil carbon
Global soils contain two to three times more carbon than the atmosphere, and higher temperatures speed up decomposition – reducing the amount of time carbon spends in the soil (known as “soil carbon turnover”).
The new international research study, led by the University of Exeter, reveals the sensitivity of soil carbon turnover to global warming and subsequently halves uncertainty about this in future climate change projections.
The estimated 230 billion tonnes of carbon released at 2°C warming (above pre-industrial levels) is more than four times the total emissions from China, and more than double the emissions from the USA, over the last 100 years.
“Our study rules out the most extreme projections – but nonetheless suggests substantial soil carbon losses due to climate change at only 2°C warming, and this doesn’t even include losses of deeper permafrost carbon,” said co-author Dr Sarah Chadburn, of the University of Exeter.
This effect is a so-called “positive feedback” – when climate change causes knock-on effects that contribute to further climate change.
The response of soil carbon to climate change is the greatest area of uncertainty in understanding the carbon cycle in climate change projections.
To address this, the researchers used a new combination of observational data and Earth System Models – which simulate the climate and carbon cycle and subsequently make climate change predictions.
“We investigated how soil carbon is related to temperature in different locations on Earth to work out its sensitivity to global warming,” said lead author Rebecca Varney, of the University of Exeter.
State-of-the-art models suggest an uncertainty of about 120 billion tonnes of carbon at 2°C global mean warming.
The study reduces this uncertainty to about 50 billion tonnes of carbon.
Co-author Professor Peter Cox, of Exeter’s Global Systems Institute, said: “We have reduced the uncertainty in this climate change response, which is vital to calculating an accurate global carbon budget and successfully meeting Paris Agreement targets.”
The work was carried-out in collaboration with scientists from the Met Office and institutes in the USA and Sweden.
The study, published in Nature Communications, is entitled: “A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming.”
***
Varney, R.M., Chadburn, S.E., Friedlingstein, P. et al. A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming. Nat Commun 11, 5544 (2020). https://doi.org/10.1038/s41467-020-19208-8
***
EcoDebate, ISSN 2446-9394, 03/11/2020
CONTEÚDO SUGERIDO / PUBLICIDADE
[CC BY-NC-SA 3.0][ O conteúdo da EcoDebate pode ser copiado, reproduzido e/ou distribuído, desde que seja dado crédito ao autor, à EcoDebate com link e, se for o caso, à fonte primária da informação ]
Inclusão na lista de distribuição do Boletim Diário da revista eletrônica EcoDebate, ISSN 2446-9394,
Caso queira ser incluído(a) na lista de distribuição de nosso boletim diário, basta enviar um email para newsletter_ecodebate+subscribe@googlegroups.com . O seu e-mail será incluído e você receberá uma mensagem solicitando que confirme a inscrição.
O EcoDebate não pratica SPAM e a exigência de confirmação do e-mail de origem visa evitar que seu e-mail seja incluído indevidamente por terceiros.
Remoção da lista de distribuição do Boletim Diário da revista eletrônica EcoDebate
Para cancelar a sua inscrição neste grupo, envie um e-mail para newsletter_ecodebate+unsubscribe@googlegroups.com ou ecodebate@ecodebate.com.br. O seu e-mail será removido e você receberá uma mensagem confirmando a remoção. Observe que a remoção é automática mas não é instantânea.